Merelbeke Flanders(Brussels)

EXPERIMENT GOALS

Agricultural application of biochar, compost, and a mixture of both materials (biochar-blended compost) to evaluate their potential for closing the cycle of nutrients in different agro-climatic regions across Europe. Barley, leek , ryegrass. pH, Soil water content, TOC, total N, extractable organic C, extractable N, NO₃⁻ and carbon dynmics.

Three-year experiment

Merelbeke Flanders (Brussels)

SITE DESCRIPTION

The field experiment was conducted in Merelbeke (Belgium), focused on an arable crop rotation that includes spring barley (*Hordeum vulgare L.*), leek (*Allium porrum L.*) and Italian ryegrass (*Lolium multiflorum L.*).

Agro-climatic conditions were characterized by fully humid temperate climate, 879 mm annual rainfall and 10.7 °C mean annual temperature.

The soil at the experimental site is a Haplic Luvisol, 59.9%sand, 34.7% silt and 5.4% clay, pH of 5.94, 0.85% TOC. The experimental design of the trial was completely randomized with four replicates.

BIOCHAR AND ITS APPLICATION IN THE FIELD

The biochar used in the field experiment was produced by PROININSO (Málaga, Spain) from the pyrolysis of oak (650 °C pyrolysis temperature, 12–18 h residence time in kiln, 0% Oxygen content). The treatments were: biochar (10.9 t C ha⁻¹), biowaste and green waste compost (10.9 t C ha⁻¹), biochar-blended compost, 10:90 w:w (10.9 t C ha⁻¹) and a control were only mineral N and K fertilizers were applied. The biochar was applied in year 1, while the compost and the biochar-blended compost were applied in year 2. All plots received an equal dose of mineral N and K fertilizer according to crop requirements (no mineral P fertilizer was applied). The organic amendments were incorporated to a depth of 20–25 cm at time of application.

Measured parameters

Field conditions: rainfall, meteorological data

Soil analysis and interactions with biochar: soil analysis, periodic soil analysis, pH, Soil water content, TOC, total N, extractable organic C, extractable N, NO₃⁻

Biochar dynamics and matrices: degradation of biochar, soil carbon contribution, soil fertility

Carbon dynamics: soil respiration with and without biochar

Production data: crop production, crop nutritional status

Other production parameters: Total concentrations of macro-micro-nutrients, total soil microbial biomass

Key findings

- The single application of biochar, compost and biochar-blended compost clearly increased soil TOC and pH.
- Composts application significantly increased NO_{3⁻} and available K content.
- Total soil microbial biomass remained unchanged after the addition of all three amendments.
- Biochar showed no negative effect on crop yield, while composts increased yield and N content in white mustard.

Planned activities or potential experimental activities

Production and agricultural application of biochar, compost, and a mixture of both materials (biochar-blended compost) to evaluate their potential for closing the cycle of nutrients in different climatic regions and crops across Europe

PRESENTATION OF THE WORKING GROUP

This study was performed under the framework of the EU project FP7 KBBE.2011.1.2–02 FERTIPLUS (Grant Agreement N° 28985), co-funded by the European Commission, Directorate General for Research & Innovation, within the 7th Framework Programme of RTD.

Bibliography and publications of the experiment

Miguel A. Sánchez-Monedero, María L. Cayuela, María Sánchez-García et al., 2019. Agronomic Evaluation of Biochar, Compost and Biochar-Blended Compost across Different Cropping Systems: Perspective from the European Project FERTIPLUS

